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An analytical solution is given to the problem of distribution of veloc-
ity, temperature and heat flux in the liquid core of solidifying
bodies of very simple shape, with natural convection and an arbi-
trary lIaw of motion of the two-phase boundary,

The solution is well known for the problem of cool-
ing of the liquid core of solidifying bodies of simple
shape, when there is no mixing of the melt [1]. In the
solidification of ordinary ingots and castings with a
superheated liquid core, convective flows occur due
to variation of density of the metal with temperature.
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Fig. 1. Location of the semi-

infinite slab or cylinder inthe

coordinate system: S is the

surface on which there are

no heat fluxes along the axis

7y 1) mold; 2) solidified crust;
3) liquid melt.

S

\

The present paper gives a solution to the problem
of cooling of the liquid core of a solidifying semi-
infinite slab and a semi-infinite cylinder, taking ac-
count of convective flow. The thermal and hydrody-
namic process of convective displacement of melt is
an unsteady one in the case under examination. Solu-
tions are not known for problems of this kind.

We arrange the slab and cylinder so that the ther-
mal plane (or respectively the axis) is parallel to the
gravity vector., We assume that there is no heat ex-
change over the top face (Fig. 1). This case corre-
sponds approximately to casting of an ingot in a heated
mold. It may also be assumed that the pressure along
the axis 7, is constant. Conditions for heat release
are symmetrical at the body boundaries. Then the
problem for a slab and a cylinder reduces to solution
of a system of three equations:

the equation of convective heat transfer
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It may be assumed that the width of the liquid zone
varies only as a function of time and is a given quan-
tity:

j=jFo). 4)

It has been shown [2] that, depending on the law of
solidification, if the heat flux from the liquid core to
the crust of the ingot is known, the conditions on the
inner surface which satisfy the given law of solidifica-
tion may be determined.

At the solidification front the relative superheat of
the melt is zero:

tly~ =0. (5)

The dimensionless velocities are also zero at this

front:

Rey =y =0, ©)
Rey fyj = 0. @

It follows from the symmetry of the bodies in ques-
tion that
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The condition for no heat exchange at the top face
is

ot
a ‘]2 T a=:t)

0. 1)

The condition that the velocity fields are zero in
the melt at time zero is

Reslpo. v = 0, (12)

Reylpo—y = 0. (12a}

For mixing of the melt under natural convection
there cannot be displacement of the liquid core as a
whole, and so the amount of cold melt descending must
be equal to the amount of hot melt ascending, which
leads to the condition

i

{ Resmyrda = 0. (13)
¢

Finally, an initial temperature distribution should
be assigned, which we take to be independent of the
coordinate 1,. However, as follows from the analysis
of the problem solved previously for the temperature
field in an unmixed core [1], it is more convenient to
assign the heat flux from the liquid melf to the crust
being formed rather than the initial temperature dis-
tribution directly. For any reasonable assumptions
about the nature of variation of heat flux with time,
it is easy to obtain a corresponding initial temperature
distribution. We therefore assign the heat flux from
the liquid melt to the crust at some level or other,
e.g., at 1, = 0, and require in addition that at time
zero the relative superheat does not depend on the co-
ordinate 7,

ot |

— —— |, -, = q{Fo), (14)
Onu (=
o [ =0, (15)
OMe [Fo=y

These two conditions are completely equivalent to
assigning an initial temperature distribution in the
melt, independent of the coordinate 1,. During cooling
the melt temperature, in general, depends on 7, be-
cause of movement of hot sections of the melt upwards,
and of cold sections downwards. »

In order to solve the problem as formulated, we
represent the functions sought in the form of the fol-
lowing power series with variable coefficients:

©

(= VG o )
keou )
2y Do ne. FO) L

Reeo V) —M/;"—“l (=K, a7)

r
i

63

R(‘l " \1 L,\ f“’)

2 a2y 1
m {5 =ik (18)

The series (16) and (17) do not differ in essence
from that used in (1), and so operations with them
do not cause difficulties. It follows from (18) that
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We illustrate the manner of obtaining the product
of the two independent infinite series with the example

Here the summation indices are denoted by different
symbolg, to underline the independence of one from
another, Let us designate: i +I=k, whenl =k — i.

It is evident that [ cannot be negative, and therefore

i cannot be greater than k. Then
Re, h(Z'L —
on.
@ k
P NS i eo)

1==0

In a similar way, we obtain the products

I Res I
RU\ 'al . Re, {”(‘)R'e‘t and RQ;’ ()'_?(“ .

om I 0N

Substituting expressions (16)—(18) into (1)—(3), and
equating coefficients with like powers j2 - n% to zero,
we obtain the following recurrence relations for coef-

ficients Ck, Dy, Ei:

A T jj,)C/c+1 T

- { 2(m 1 4-2k) +
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Eppr = Dyj.  (23)

{m+1+20E,+

24 Ne

From the boundary conditions (5)—(7) we have at
once

Cy =0, (24)
Dy =0, (25)
E,--0. (26)

Functions Cy and Dy must be determined from the
remaining boundary conditions. Function Eq is deter-
mined from recurrence relation (23):

E, = 0. @7

Performing a calculation according to (21)-(23),
we obtain

me-1 = jf

C‘l = 2—12 Cl, (28)
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Substituting (16) in place of t, we have, from con-
dition (14),
C, (0, Fo) — -—1, q. (34)
2j

From (11), in the same way, we obtain

T Y (35)
e lr.=0
Whenk =1
d
—— C; (0, Fo)=0. (36)
o, -
When k = 2 we also obtain (36).
When k = 3
9. C3(0, Fo)=0.
O0Me

Using expression (29) in place of C3, we obtain

=0.

(‘—Q'-’C,___ *C, )|
JdFodn, dn; -

After integration we have

( _(?& _ _02__)1 - ([))

Since the integration was carried out with respect
to the variable 7, the arbitrary constant of integra-
tion may depend on Fo. Therefore

2
_.-;7 €, (0, Fo) = ®(Fo)+ a_f:;)' G (0, Fo).  (37)

7‘2
Since we require condition (35) to hold for coeffi-
cients Cy with indices k > 3, we may obtain all the
successive coefficients of the expansion of function
Cy(ny, Fo) as a series in powers of 1,. In the first
approximation, confining ourselves to the coefficients
found, we obtain

Ci (1. Fo) =Gy (0, Fo) -

] Jd
+—1® = -2 _¢0, o) | . 38
2{ 5Fo )w K 38)

To determine function & we use (15), when

0(,;,?_ ' =0.
I lro=o
When k = 1 we have
M |
ﬂ‘_ ! =0.
a‘ri‘z Fo=—0

Substituting expression (38) in place of Cy, we ob-
tain

d
®(0) = — N G (0, 0). 39)
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Fig. 2. Distribution of temperature, heat flux, and velocity

in a semi-infinite slab undergoing solidification: a) curves

of relative superheat temperature t; b) vertical component

of dimensionless velocity Re,; ¢) horizontal component of

dimensionless velocity Rej; d) dimensionless heat flux from

melf to crust g; 1) Fo=0; 2) 0.1; 3) 0.2; 4) 0.3; 5) 0.4; 6)
0.5.
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When k = 2 we obtain the same condition. When
k = 3, replacing C3 by C according to (29), and expres-
sing Cy according to (38), we obtain

. q :=ﬁ_—7() 0 40
dFo dFo? 110, 0). (40)

Continuing this process when k > 3, we obtain fur-
ther terms of the expansion of function @ (Fo). ﬁn;tge
first approximation

0 @,
@ (Fo) = — [m C, (0, Fo) :i —_—
{Fo=0
62
— Fo — C, (0, F 41
[ dFo? ! ( 0) j) Fo==0 ( )

Indeed, with the aid of (14), (11), and (15), func-
tion Cy{n,, Fo) is completely determined (expressions
(34), (38), and (41) determine it in the first approxi~
mation). '

In order to determine function Dy, we must use the
remaining conditions (12) and (13).

The validity of the following relations may be
shown:
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Using the first of these, we write (13) for the slab
(m = 0) in the form

i

\‘ R(};‘d'ql e \1 \‘ ,~.{'.).’_‘[ /]'___ 200 =),
. — (L I
« [=0 U
Putting I +i=X%, =k ~ i, we obtain
i £k
Resd NN Dukt 0 (44)

, /-]- (/\ 4-1)'(IL i
Restricting ourselves to the first few terms of the
series, we obtain from (44)

06T Dy + 0,967 DuP £ 0.073 D, ... 0. (45)

Substituting their expressions in terms of Dy instead
of D, and D;, we obtain when m = 0 from (30) and (31),
after simple transformations,

2] [’ .
Dy T T Dy = PrarCy -
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21D
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Here we have dropped the term containing jj' as a
square in the brackets, in order to effect some sim-
plification, it being negligible in comparison with the
terms retained.

" The solution of the equation formulated has the
form

IS

D, PrGrexp(wP \ 54 114
. P

Fo Fo
% | €+ Pexp (Pr\
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The function f is determined by the expression

v

fe==Prexp (»— Pr) ATS UL gy ) X
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x | Sexp (Prg ATSE LA dFo) dFo.
! 2 . it
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It follows from (12) that
Dy lpyeo = 0. (49)

It is easy to see from (47) that this condition is satis-
fied when k=1 and k= 2. When k = 3, expressing Dj
in terms of Dy according to (31) and performing the
differentiation, we obtain '

R B

— D =
Pr dFo teo=p

PrGr(C, -+ f) [Fu=at Dyl = 0.

Thus, even when k = 3, (12) is satisfied identically.

Condition {122) is also satisfied, which may easily

be verified from the recurrence formula (23).
Condition (13) for the cylinder (m = 1) may be writ-

ten, using (43), in the form

" D

Reamudn 'T]‘\1 TN

= 0. (50)
I.)l

In this expression the summation index ! has been re-
placed by k. Restricting ourselves as before to the
first few terms of the series, we obtain, from (50),

0.50 Dy - 0.167 Doj® + 0.0417 Dyj* + ... =

After transformations similar to those carried out
previously, we have
N

9 p, o+ Pr s e8jjyD, - prGrc, o pr 2l
dFo ? o

The equation obtained is analogous to (46), and
therefore its solution has the analogous form:

Fo
Dy =PrGrexp (—Pr (
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to
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Here, as in the previous case, conditions (12) and
(12a) are satisfied identically.

As an illustration a calculation has been done of
distributions of temperature, heat flux, and velocity .
in the liquid core of a semi-infinite slab of thickness
2R = 0,4 m, with a linear law of crust growth (Fig. 2):

j=1—12Fo.

The liquid melt is steel; a = 9.555 - 10”° m?/sec;
p=0,36 - 107¢ m?/sec; A =23 W/m - degree; 8= 25 x
x 1075 [ /degree; Tk = 1500° C; the maximum initial
temperature T = 1525° C; Pr = 0,065; Gr = 3,47 .10°,
The dimensionless heat flux is given in the form

g = 2Ljexp{—5Fo).

The coefficient of proportionality (a constant) L was
determined in the last stage of calculation from the

condition fuax Iro=o = 1,and proved to be 1.3. The cal-
culation was done at ,= 0 and 9, = 0.1,
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NOTATION

! = (T —T)/NT,— Tx) —relative superheat temperature
of melt; T—temperature of melt; Tg—crystallization
temperature; T,—maximum initial temperature of
melt; Fo= a7/R*—dimensionless time; a—thermal
diffusivity of melt; T7—time; R—half-thickness of slab,
or radius of cylinder; Pr = v/a—Prandtl number;
vLkinematie viscosity of melt; nj = xj/R—dimen-
sionless coordinate; j—dimensionless distance from
dxis of slab or cylinder to solidification front; Rej =
= y;R/v—dimensionless component of melt velocity
along coordinate n;; m—shape factor equal to 0 for
slab, and 1 for cylinder; Gr =g 5 (T, — 7) R%~* ~Grashof
number; g—acceleration due to gravity; f—coefficient
of volume expansion of melt; ¢ = QR/. (T, — T —dimen-
sionless heat flux from liquid core to crust of ingot;
Q—heat flux to ingot crust; A--thermal conductivity
{molecular) of melt.
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